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Abstract: We consider the open string vacuum amplitude determining the interaction

between a stack of N D3-branes and a single probe brane. When using light cone gauge,

it is clear that the sum of planar diagrams (relevant in the large-N limit) is described by

the free propagation of a closed string. A naive calculation suggests that the Hamiltonian

of the closed string is of the form H = H0 − gsNP̂ . The same form of the Hamiltonian

follows from considering the bosonic part of the closed string action propagating in the full

D3-brane background suggesting the naive calculation captures the correct information.

Further, we compute explicitly P̂ from the open string side in the bosonic sector and show

that, in a certain limit, the result agrees with the closed string expectations up to extra

terms due to the fact that we ignored the fermionic sector.

We briefly discuss extensions of the results to the superstring and to the sum of planar

diagrams in field theory. In particular we argue that the calculations seem valid whenever

one can define a (σ ↔ τ) dual Hamiltonian in the world-sheet which in principle does not

require the existence of a string action. This seems more generic than the existence of a

string dual in the large-N limit.
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1. Introduction

One of the most promising approaches for understanding QCD in the infrared, strong

coupling regime, is the large-N approach proposed by ’t Hooft [1]. He argued that, par-

ticularly when considered in light cone frame, a theory with SU(N) symmetry and fields

in the adjoint looks similar to a string theory (also in light cone frame). Although this

was a beautiful idea, the development of string theory was largely unrelated to it until

Polchinski [2] found certain new objects in string theory, namely D-branes, that had a

description in terms of open strings ending on them or, alternatively, in terms of closed

strings propagating in certain supergravity backgrounds. Since the low energy limit of the

open string theories living on N D-branes is a gauge theory with gauge group SU(N) and

the closed string description was valid when N was large, the relation was reminiscent of

’t Hooft’s large-N approach. This connection was understood by Maldacena [3] who used
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it to find the first concrete example of the relation between the large-N limit of a gauge

theory and a string theory. This relation is known as the AdS/CFT correspondence and

appears as a fundamental step towards understanding ’t Hooft’s original proposal. In the

standard example, the low energy description of a stack of D3 branes leads to a relation

between N = 4 SYM and IIB string theory on AdS5 × S5. However, this result is reached

indirectly, so that it is not clear how to implement the initial idea that one could derive

the string Hamiltonian from the field theory. In this paper we try to shed some light on

this problem.

To understand what happens, it seems easier to embed the SU(N), N = 4 theory in an

open string theory, IIB theory on the presence of N D3-branes, namely, to go back one step

before AdS/CFT is derived. As argued by Polchinski [2], at lowest order, the interaction

between a stack of D3 branes and a probe brane is given by the vacuum amplitude of an

open string with an end on the stack of D3-branes and another in the probe brane. This

vacuum amplitude has an alternative interpretation as a closed string emerging from the

probe brane in a state usually called a boundary state and then being absorbed by the

stack of branes also in a boundary state (see fig. 1). If the number N of D3 branes is

very large then one should replace the stack of D3 branes by a supergravity background

in which the closed string propagates. The interaction is now given by the action of the

probe brane in such background.

In the original picture the supergravity background

N

Figure 1: The interaction be-

tween a stack of N D-branes

and a probe brane is given, at

lowest order, by a one-loop open

string diagram, or equivalently

by a single closed string inter-

change.

should appear when summing all planar corrections to the

vacuum amplitude. From the closed string point of view

we shall see that, at least in a naive treatment of the prob-

lem, the sum over planar diagrams is given by the same

calculation as the one-loop calculation. Namely, the closed

string emerges from the probe brane in a boundary state

and is absorbed by the stack of branes also in a boundary

state. The only difference is that the propagation of the

closed string is determined by a new Hamiltonian different

from simple propagation in flat space. It contains an extra

piece that can be described as the operator that inserts a

hole in the world-sheet. Equivalently, this operator can also

be seen as describing the scattering of closed strings from

D-branes. A natural question is therefore if this modified

Hamiltonian describes the propagation of a closed string in

a modified background.

To answer this question we explicitly compute the Ha-

miltonian and show that in a certain limit it agrees with

the expectations. The comparison is done by studying only

the bosonic sector of the theory. So we get extra terms terms due to the presence of the

tachyon. We leave the study of the supersymmetric case for future work. A problem is

that it cannot be compared with the string action in the full D3 background since that is

not known. What one knows is the propagation in the near-horizon (AdS5 × S5) limit [4].
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For that we should compare with the field theory limit of the string Hamiltonian. It seems

easier in that case to derive the string action directly from the N = 4 SYM theory in light

cone gauge, since, in that gauge, the theory is greatly simplified [5]. We expect to report

on this in future work.

We should also note that the treatment of the planar diagrams we give here appears as

a naive first step since we ignore the presence of potential divergences that one might have

to subtract giving rise to extra terms in the closed string Hamiltonian. In spite of that we

obtained partial agreement with the supergravity background suggesting that at least in

certain limits such corrections might be absent. We also note that even if those correction

are present, the calculation of the operator P̂ that we perform here is interesting in itself

since it seems to contain all the information about the background.

Some recent work dealing with deriving a world-sheet description of a gauge theory

are [6, 7]. In the first, a representation in terms of a spin system followed by a mean-field

approach is proposed to obtain a world-sheet action and in the second a representation

of a free field theory in terms of strings is discussed. In the context of the AdS/CFT

correspondence a relation between the Schwinger parametrization of Feynman diagrams

and particles propagating in AdS5 space was discussed in [8]. A more detailed analysis of

this proposal including various checks can be found in [9].

Gauge theories in the light cone have been studied in detail [10]. More recent work in

that respect is [11, 12]1. In [11], loop calculations are discussed and in [12] the formulation

of N = 4 in light cone gauge [5] is used to compute conformal dimensions of various

operators.

String theory in light cone gauge is also very well studied [13]. In the case of the

superstring that will interest us in part of the paper, light cone gauge was an important

method used to construct the theory [14, 15]. More recently, the study of the interaction

of closed strings in light cone gauge has also played a role in AdS/CFT [16].

The idea of defining a “hole” operator was already considered for example in [17]. As

explained there, it is not clear that it gives rise to a local world-sheet Hamiltonian and

therefore to a dual string theory.

All these works, including what we present here, suggest that using light-cone frame

is indeed an appropriate framework for understanding the sum of planar diagrams, as was

envisioned by ’t Hooft in [1]. A difference with previous work however is that, for our

purpose, we do not need a string description of the large-N limit, but only a Hamiltonian

description in the dual (σ ↔ τ) channel. In particular the Hamiltonian we get is non-local

and therefore it does not have a clear interpretation as a string Hamiltonian. Nevertheless

it can still be useful to understand the properties of planar diagrams.

To finish, let us clarify that, in a generic field theory, light cone frame refers to using

light-like coordinates X± to quantize the theory whereas light cone gauge refers to taking

A+ = 0 in a gauge theory. In string theory light cone gauge refers to taking X+ = τ and

in the field theory limit is related to both light cone frame/gauge.

1I am grateful to L. Brink for pointing out the recent work of C. Thorn
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2. Planar diagrams in light cone gauge

As depicted in fig. 1, the interaction between two D-branes can be computed, at lowest

order as a one-loop vacuum diagram of an open string stretching between them or as the

propagation of a closed string emerging from one D-brane and disappearing in the other.

The initial and final states of the closed string are the so-called boundary states corre-

sponding to the D-branes in question. The two calculations are related by an interchange

between σ and τ , the world-sheet coordinates. In the path integral approach both calcula-

tions are the same, but if we use a Hamiltonian approach they differ in which world-sheet

direction we take to be time and which to be space.

Suppose now that we take time to be such that we have open string states and do the

computation in light-cone gauge. In order to do that, we choose a direction X parallel to

the brane and define X± = (x ± t). We use conformal gauge by fixing the world-sheet

metric to be equal to the identity and use a residual symmetry to take X+ = τ identifying

world-sheet time with X+. Since we want to compute a partition function, we take τ and

therefore X+ to be periodic with period 2π.

If we now want to include higher order corrections we should use the three-open string

vertex which allows for open strings to split and rejoin. A typical diagram looks like the

one in figure 2. In this section we study the sum of all those diagrams that can be drawn

by adding slits to the cylinder as in the figure. There are many other diagrams where the

open strings cross over each other before reconnecting. Those are non-planar and we ignore

them here since we are interested in the large-N limit.

In the path integral approach [13] we should compute, for a given diagram with n holes

Zn =

∫ n
∏

i=1

dσL
i dσR

i dτi

∫

DX e
R

dσdτ∂Xµ ∂̄Xµ

, (2.1)

where the path integral is over configurations that obey appropriate boundary conditions

on the slits. We consider the case when all those slits are on the D3-branes sitting at

the origin. The other D-brane is taken as a probe. We should integrate over all positions

of the slits (σL
i , σR

i , τi), where there are two σ’s and one τ for each slit, namely three

parameters. The cuts are indistinguishable so the integral should be such that we do not

count configurations related by interchanging cuts. Finally we should weigh the diagram

with a factor (gsN)n (n is the number of slits).

We make here two important assumptions about this expression. First, that the mea-

sure of integration for the parameters σL
i , σR

i and τi is completely determined by the path

integral without any extra functions. Second, that there is no n dependent factor in front

(other than a power An that can be absorbed in the coupling constant). These assumptions

can be relaxed slightly as we discussed later but without them we cannot do the rest of the

calculation. It is not clear to us if the relative weight of the string theory diagrams has been

studied carefully enough to know if these assumptions give rise to consistent amplitudes.

On the other hand, the comparison we make later in the paper between the open string

diagrams and propagation of a closed string suggest that they are reasonable.
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Figure 2: Typical diagram appearing in the computation of the open string vacuum amplitude

in light cone gauge. In this channel a single closed string propagates suffering self interactions at

certain times.

If we now use a Hamiltonian approach but in the closed string channel we see that

we always have only one closed string2, namely it does not split, so it is a “free” closed

string propagator. The only caveat is that at certain times τi the closed string suffers a

self-interaction. We can define an operator P̂σL
i σR

i
that propagates the closed string from

τi − ε to τi + ε, (ε → 0). Using this operator we can rewrite Zn as

Zn =

∫

ti<τ1<...<τn<tf

n
∏

i=1

dσL
i dσR

i dτi 〈f |e−iH0(tf−tn) P̂σL
n σR

n
e−H0(tn−tn−1) . . .

. . . P̂σL
1 σR

1
e−H0(t1−ti) |i〉, (2.2)

The initial and final states |i〉, |f〉 are boundary states and H0 is the free closed string

Hamiltonian. Since the only dependence on σL,R is in the P̂ ’s we can define a new operator

P̂ =

∫

dσLdσRP̂σLσR . (2.3)

The only dependence on τi is in the free propagators. We can define new variables ξi =

ti − ti−1 ≥ 0, i = 1 . . . n + 1 and rewrite everything as

Z =

∫ ∞

0

n+1
∏

i=1

dξi δ
(

∑

ξi − (tf − ti)
)

〈f |e−H0ξn+1P̂ e−H0ξn . . . P̂ e−H0ξ2P̂ e−H0ξ1 |i〉. (2.4)

2This closed string is wrapped around the direction X
+ that we took to be periodic.
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The total vacuum amplitude, namely the sum over all planar diagrams is given by

ZT =
∑

n

(gsN)n
∫ ∞

0

n+1
∏

i=1

dξi δ
(

∑

ξi − (tf − ti)
)

〈f |e−H0ξn+1P̂ e−H0ξn . . . P̂ e−H0ξ1 |i〉

= 〈f |
∑

n

(gsN)n
∫ ∞

−∞

dω

2π

∫ ∞

0

n+1
∏

i=1

eiω(
P

ξi−(tf−ti))e−H0ξn+1P̂ e−H0ξn . . .

. . . P̂ e−H0ξ2P̂ e−H0ξ1 |i〉

= 〈f |
∫ ∞

−∞

dω

2π
eiω(tf−ti)

∑

n

(gsN)n
1

H0 − iω

[

P̂
1

H0 − iω

]n

|i〉 (2.5)

= 〈f |
∫ ∞

−∞

dω

2π
eiω(tf−ti)

1

H0 − (gsN)P̂ − iω
|i〉

= 〈f |
∫ ∞

0
dξ

∫ ∞

−∞

dω

2π
eiω(tf−ti)+iωξ−(H0−(gsN)P̂ )ξ|i〉

= 〈f |
∫ ∞

0
dξδ(ξ − (tf − ti))e

−(H0−(gsN)P̂ )ξ|i〉

= 〈f |e−(H0−(gsN)P̂ )(tf−ti)|i〉.

These elementary manipulations lead to the result that the partition function can indeed be

computed as a free string propagation (in the sense that the string does not split) but with

a modified Hamiltonian H = H0 − λP̂ where λ = gsN . It is clear that this is independent

of the initial and final states so we can ignore those and simply study closed strings with

Hamiltonian H. Such Hamiltonian determines the “dual” closed string picture to the open

string one. It is a bit peculiar because P̂ is a non-local operator in the world-sheet so

the interpretation of H as a string Hamiltonian is unclear for now. What is certain is

that it describes a Hamiltonian of a non-local one-dimensional system that contains the

information about the sum of all planar diagrams in the open string channel. As part of

that it also contains information about the sum of all planar diagrams in the low energy

gauge theory.

We can now go back to the assumptions we made. We see that extra σL,R
i -dependent

functions are acceptable as long as they factorize such that they can be absorbed in the

operator P̂ . However we need to have locality in τ , namely, if we cut the diagram at a

certain value of τ and introduce an identity, the diagram should factorize in two independent

pieces. This means that if we take τ1 < τ2 < τ3, propagation from τ1 to τ3 is the same

as propagation from τ1 to τ2 and then from τ2 to τ3. Another potential problem is the

presence of an n-dependent coefficient in front of the diagram. In that case, instead of an

exponential, the sum will give another function of H0 and λP̂ . This could still be tractable

but certainly more cumbersome.

Even if these assumptions are correct, the expression for the amplitude might still not

be well defined. In the superstring one has to insert extra operators at the end points of the

slit where the world-sheet is singular. These operators contract among themselves when

the slits come close to each other, giving rise to singularities that need to be subtracted.

What this means is that in the string Hamiltonian there are vertices of order higher than

– 6 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
5

cubic [18, 14, 15] making the light cone superstring possibly ill defined3. Furthermore, when

two slits come together there can be singularities already in the bosonic string4. When

the slits are small, these singularities are of the type that appear when two world-sheet

operators come close and are usually avoided by analytic continuation in the momenta of

the operators but it is not clear if that idea can also be used here. When the slits that

come together are long, the singularity comes from an open string tachyon propagating

between the slits which seems to be an unavoidable problem in the bosonic string5. In the

superstring it should go away.

In any case, all these considerations show that the calculation we did is too naive and

one might expect to get corrections to P̂ of higher order in λ.

In fact, at first, this sounds as a very reasonable possibility since the closed string

Hamiltonian should describe propagation of the closed string in the full D-brane background

which has a non-trivial dependence on λ. However, in the next section we show that, in

spite of the complicated background, in this gauge, the propagation of the closed string

in the full D-brane background is described by a Hamiltonian first order in λ. This adds

plausibility to the idea that the sum exponentiates and that the naive calculation captures

some important physics. Moreover, in later sections we compute P̂ and compare with

the expectation from closed string propagation and find agreement up to terms that we

attribute to the fact that we do so only for the bosonic sector of the theory.

An optimistic interpretation would be that we can view the exponentiation as a par-

ticular way of regularizing the divergences we discussed and therefore is a consistent result

for the sum of planar diagrams.

Before going into the calculation it is interesting to discuss what happens if we want to

compute a scattering amplitude instead of a vacuum amplitude. This is clarified in fig. 3

where we see that, after interchanging σ ↔ τ we should compute the propagation of an

infinitely long string. This string has the same self-interaction from the slits to which we

should add the special cuts that extend to infinite. It is clear that the contribution of the

slits is the same as before and therefore give rise to the same Hamiltonian. In terms of the

AdS/CFT correspondence it seems that the infinitely long string should be interpreted, in

some sense as a string ending in the boundary. In this paper we do not discuss further

the calculation of scattering amplitudes and concentrate in the diagrams of fig. 2. Note

however, that whether we compute scattering amplitudes or vacuum amplitudes, the closed

strings we need to consider are “long” since X+ = σ. We do not need to study point-like

strings, namely those such that all coordinates are independent of σ.

3. Closed strings in the D3-brane background

In this section we consider the bosonic part of the action of a string moving in the full

3I am grateful to N. Berkovits for explaining this to me.
4I am grateful to J. Maldacena for emphasizing this point.
5I am grateful to I. Klebanov for pointing this out.
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σ

τ
4

1

2

3

Figure 3: Typical diagram appearing in the computation of a two particle scattering amplitude

(1+2 → 3+4) in light cone gauge. We flipped σ and τ with respect to the usual open string channel

parameterization. In this channel an infinitely long string propagates having self interactions at

certain times.

D3-brane background. The metric is

ds2 =
1√
f

(

dX+dX− + dX2
)

+
√

fdY 2, f = 1 + 4πα′2 gsN

Y 4
, (3.1)

where X±,X denote the coordinates parallel to the brane and Y those perpendicular. The

Polyakov action in such background is

S =
1

4πα′

∫

dσdτ
√

hhabGµν∂aX
µ∂bX

ν . (3.2)

We expect that the match to the string side happens in light cone gauge since we do the

open string calculation there. However, in a curved background things are slightly more

complicated and we are going to follow the ideas in [19, 20] where the similar case of AdS5

was considered.

As indicated in [20], we can fix the gauge by taking h01 = 0, X+ = τ . The action

reduces to

S =
1

4πα′

∫

dσdτ

[

E(Ẋ− + Ẋ2) − 1

f
EX ′2 + EfẎ 2 − 1

E
Y ′2

]

, (3.3)

where E =
√

− h11
h00f . The equation of motion for X− implies that E is a function of σ only

so we can set it to 1 by redefining σ accordingly. We end up with an action

S =
1

4πα′

∫

dσdτ

[

Ẋ2 − 1

f
X ′2 + fẎ 2 − Y ′2

]

. (3.4)

Now we want to compute the Hamiltonian. It turns out to be

H =
1

4πα′

∫

dσ

[

(2πα′ΠX)2 +
1

f
(2πα′ΠY )2 +

1

f
X ′2 + Y ′2

]

, (3.5)

which is clearly not of the form H = H0 − λP̂ so we seem to have failed. However we

should now remember that in the open string we fixed X+ = τ and, when going to the

– 8 –
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closed string channel, that becomes σ, the spatial direction. If we interchange σ and τ in

the action we get (we also introduce an overall sign while doing that):

S =
1

4πα′

∫

dσdτ

[

−X ′2 +
1

f
Ẋ2 − fY ′2 + Ẏ 2

]

. (3.6)

Although nothing dramatic happens from the point of view of the action, if we compute

the Hamiltonian now we get

H =
1

4πα′

∫

dσ
{

(2πα′ΠY )2 + X ′2 + f
[

(2πα′ΠX)2 + Y ′2]} . (3.7)

Recalling that f = 1 + 4πα′2 gsN
Y 4 we get

H =
1

4πα′

∫

dσ

{

(2πα′ΠY )2 + X ′2 + (2πα′ΠX)2 + Y ′2 +
4πα′2gsN

Y 4

[

(2πα′ΠX)2 + Y ′2]
}

,

(3.8)

which indeed is of the form H − λP̂ with

P̂ = −α′
∫

dσ
1

Y 4

[

(2πα′ΠX)2 + Y ′2] . (3.9)

So in this gauge, closely related to light-cone gauge, that we can call σ-gauge (because

X+ = σ) the Hamiltonian has the desired form. To check units we should use that σ, Y

have units of length, α′ of length squared and ΠX of [length]−1. One should note that

this result is true for branes of any dimensionality even if here we are interested only in

D3-branes. In the D3-brane case, the Maldacena (near-horizon) limit, which can loosely

be described as “dropping the 1” in the function f , leads to the Hamiltonian

H =
1

4πα′

∫

dσ

{

(2πα′ΠY )2 + X ′2 +
4πα′2gsN

Y 4

[

(2πα′ΠX)2 + Y ′2]
}

, (3.10)

which describes propagation of closed strings in AdS5(see e.g. [20] for a related Hamilto-

nian). Note that this Hamiltonian scales as µ2 under the scale transformation X → µX,

Y → Y/µ whereas the full Hamiltonian (3.8) does not.

Going back to (3.8), it remains to be seen if the operator P̂ that we found here is the

same as the one we derived from the open string side. In the next section we compute P̂

from the open string point of view and make the comparison.

4. The hole operator P̂

In this section we compute the operator P̂ . This amounts to finding the relation between

the state of the closed string just before and just after a time where we insert a hole or

slit. In the case of all Dirichlet boundary conditions, this problem was solved by Green and

Wai [21]. Since we need also to consider Neumann boundary conditions and our expressions

are slightly simpler we include a detailed account of the calculation 6.

6In fact we learned about [21] after we had finished the calculation which partially explains why we

obtained different looking expressions
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0

π

π

−σ

σ

0

0

−

τ =0

Figure 4: Diagram defining the operator P̂ . The upper and lower lines are identified so this

diagram describes the propagation of a closed string. It propagates freely from τ = −∞ to τ = 0

where we apply P̂ . Then it propagates freely again to τ = +∞. Removing the free pieces from the

amplitude we get the operator P̂ .

4.1 Computation of P̂ .

To understand the definition of P̂ it is useful to include it in an infinite cylinder as in fig. 4.

This diagram read from left to right, can be thought as a closed string propagating freely

up to τ = 0 where we apply P̂ . After that we let it evolve freely again. In fact this is

actually the calculation we should do to compute closed string scattering from a D-brane

for generic closed string states. Although this interpretation clarifies the meaning of P̂ ,

obtaining a precise expression for it is a rather lengthy calculation (see e.g. [13]) that we

divide in some steps. Summarizing: first we use a representation of P̂ as a two string

vertex state that has to satisfy certain properties from continuity of the coordinates and

boundary conditions on the slit. After that we show that these conditions have a solution

in the oscillator basis in terms of some undetermined Neumann coefficients. Finally, using

the relation to the scattering amplitude we find these coefficients.

4.1.1 P̂ as a two closed string vertex

We are going to describe the operators in terms of a vertex state defined in the product of

two single strings Hilbert spaces. More precisely we take

|V 〉 =
∑

|1〉|2〉
〈2|P̂ |1〉 |1〉 ⊗ |2〉, (4.1)

where |1〉 ⊗ |2〉 is a state in the product Hilbert space of two strings and 〈2|P̂ |1〉 is the

matrix element of P̂ when considering the two states as being states of a single string. The

state |V 〉 so defined has the property

P̂ |1〉 = 〈1|V 〉. (4.2)

This seems a bit convoluted but is standard and helps simplifying some expressions. In

fact what we do in this section is essentially to follow section 11 in [13].

– 10 –



J
H
E
P
1
0
(
2
0
0
6
)
0
8
5

One way to compute |V 〉, is simply to observe that the states before and after the

self interaction, are related by continuity and conservation of momenta in the region σ0 <

σ < 2π −σ0 where there is no slit whereas they are projected to the appropriate boundary

conditions on the slit −σ0 < σ < σ0.

The state |V 〉 is then required to satisfy

(X1(σ, τ = 0) − X2(σ, τ = 0)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.3)

(P1(σ, τ = 0) + P2(σ, τ = 0)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.4)

X1(σ, τ = 0)|V 〉 = 0, |σ| ≤ σ0, (4.5)

X2(σ, τ = 0)|V 〉 = 0, |σ| ≤ σ0, (4.6)

for Dirichlet bdy. conditions and

(X1(σ, τ = 0) − X2(σ, τ = 0)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.7)

(P1(σ, τ = 0) + P2(σ, τ = 0)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.8)

P1(σ, τ = 0)|V 〉 = 0, |σ| ≤ σ0, (4.9)

P2(σ, τ = 0)|V 〉 = 0, |σ| ≤ σ0, (4.10)

for Neumann (since P = ∂τX). This can be rewritten in a simpler way as:

(X1(σ) − X2(σ)) |V 〉 = 0, −π ≤ σ ≤ π, (4.11)

(X1(σ) + X2(σ)) |V 〉 = 0, |σ| ≤ σ0, (4.12)

(P1(σ) + P2(σ)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.13)

for Dirichlet and

(P1(σ) + P2(σ)) |V 〉 = 0, −π ≤ σ ≤ π, (4.14)

(P1(σ) − P2(σ)) |V 〉 = 0, |σ| ≤ σ0, (4.15)

(X1(σ) − X2(σ)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.16)

for Neumann, where we understand all operators are evaluated at τ = 0. These equations

are enough to find the two-strings vertex state. Before going into that let us make a quick

argument to show that these equations can be solved and which form the solution has.

Suppose we define a generalized boundary state |B(O)〉 through the condition O(σ)

|B(O)〉 = 0,∀σ. It is well known how to find such state if O = X or O = P [22]. Having

that we can construct our desired state as

|V 〉D = e
i π
8

R σ0
−σ0

(P1+P2)2+(X1+X2)2 |B(X1 − X2)〉 ⊗ |B(P1 + P2)〉, (4.17)

|V 〉N = e
i π
8

R σ0
−σ0

(P1−P2)2+(X1−X2)2 |B(P1 + P2)〉 ⊗ |B(X1 − X2)〉. (4.18)

The operators in the exponent are such that they rotate P into −X (and X into P ).

This is easily seen since they are harmonic oscillator Hamiltonians7 independent at each

7This should not be confused with the Hamiltonian of the string which contains X
′2 and is completely

unrelated. We are just using a trick to write the state explicitly.
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value of σ. The standard time evolution of the harmonic oscillator interchanges X and

P after one quarter period. Here that is π
2 , there is an extra 1

4 because the Hamiltonian

is h = 1
2(p̃2 + x̃2), with p̃ = 1√

2
(P1 ± P2) and the same for x̃. To find the state in the

oscillator number basis we can replace X and P in terms of an and a†n and normal order

the exponential (including what comes from writing the boundary states). To do that we

expand X and P in normal modes as

Xi
r = xi

r +
∑

n 6=0

i

|n|
(

airn − a†ir,−n

)

einσ, (4.19)

P i
r =

1

2π



a†ir0 +
1

2

∑

n 6=0

(

ainr + a†ir,−n

)

einσ



 , (4.20)

where n is summed from −∞ to +∞. We extracted the zero mode and defined for conve-

nience p0 = a†i0r. Besides, the index i labels the coordinate and the index r = 1, 2 labels

the string we consider. Also, the commutation relations read

[airn, a†jsm] = |n| δijδrs δmn. (4.21)

After normal ordering, the result for |V 〉 is of the form

|V 〉 = e
P

rs,imn Nrs
i,nma†

irna†
ism

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (4.22)

where we still have to determine the coefficients Nrs
mn(εi, σ0). The indices r, s = 1, 2 label

the string and −∞ < m,n < ∞ the Fourier modes. Also, the state |0〉 is the vacuum of the

oscillators with n 6= 0. The state depends on p0 = a†i0r and we consider such dependence as

the wave-function of the state in momentum representation. For the Neumann coordinates,

the wave function has an explicit delta function for the zero modes. This is indicated by

the constants εi which we define to be +1 for directions i satisfying Neumann boundary

conditions and εi = −1 for Dirichlet. This allows for more compact expressions for the

coefficients N rs
i,nm which are Dirichlet or Neumann depending on the direction i and should

follow after normal ordering the expression one gets for |V 〉.

4.1.2 Equations for the Neumann coefficients

Instead of doing the normal ordering calculation it is easier to convert the equations for

|V 〉 into equations for Nrs
mn(εi, σ0). To write those conditions we use that

Xi
r|V 〉 = e∆B

∑

sm

2i





∑

n

N rs
i,mneinφ −

∑

n 6=0

1

2|n|δ
rs
m+neinφ



 a†ism|0〉, (4.23)

P i
r |V 〉 = e∆B

1

2π

∑

sm



δsrδm0 +
∑

n 6=0

|n|N rs
i,nmeinφ +

1

2
δrs
m+neinφ



 a†ism|0〉, (4.24)
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where we commuted Xi
r and P i

r with the exponential exp(∆B), ∆B =
∑

rs,mn N rs
i,nma†irna†ism

Consider now the case of Dirichlet boundary conditions. We get that

(X1(σ) − X2(σ)) |V 〉 = 0, −π ≤ σ ≤ π, (4.25)

is valid if

∑

n

(

N1s
i,nm − N2s

i,nm

)

einσ =
δm6=0

2|m| (δ
1s − δ2s)e−imσ , −π ≤ σ ≤ π, (4.26)

whereas

(X1(σ) + X2(σ)) |V 〉 = 0, |σ| ≤ σ0, (4.27)

is valid if
∑

n

(

N1s
i,nm + N2s

i,nm

)

einσ =
δm6=0

2|m| (δ
1s + δ2s)e−imσ , |σ| ≤ σ0. (4.28)

Finally, for

(P1(σ) + P2(σ)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.29)

we need

δm0 +
∑

n

|n|
(

N1s
i,nm + N2s

i,nm

)

einσ +
1

2
e−imσ = 0, σ0 ≤ |σ| ≤ π. (4.30)

Similar relations are obtained for the Neumann case. We get that

(P1(σ) + P2(σ)) |V 〉 = 0, −π ≤ σ ≤ π, (4.31)

is valid if

∑

n

|n|
(

N1s
i,nm + N2s

i,nm

)

einσ = −1

2
e−imσ , −π ≤ σ ≤ π, (m 6= 0), (4.32)

whereas

(P1(σ) − P2(σ)) |V 〉 = 0, |σ| ≤ σ0, (4.33)

is valid if

∑

n

|n|
(

N1s
i,nm − N2s

i,nm

)

einσ = −(δ1s − δ2s)

[

δm0 +
1

2
δm6=0e

−imσ

]

, |σ| ≤ σ0. (4.34)

Finally, for

(X1(σ) − X2(σ)) |V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.35)

we need

∑

n

(

N1s
i,nm − N2s

i,nm

)

einσ = δm6=0
1

2|m|(δ
1s − δ2s)e−imσ = 0, σ0 ≤ |σ| ≤ π. (4.36)

In the following we find the solution to the equations (4.25)-(4.36).
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4.1.3 Obtaining Nrs
mn(εi, σ0)

Instead of solving the equations directly we found useful to extract the Neumann coefficients

directly from the amplitude in figure 4 where we considered the infinite cylinder −∞ <

τ < ∞, −π < σ < π, and inserted a slit at τ = 0. If we send a closed string state 〈1|
from τ = τi → −∞, it will evolve with the free closed string Hamiltonian until it reaches

τ = 0, there we have to apply the operator P̂ and then it will keep evolving with the free

Hamiltonian. If we compute then the overlap with another state at τ = τf → ∞ and

extract the exponentials exp(−P 1
−τi + P 2

−τf ) (where P 1,2
− are the light cone energies of the

initial and final states) then we are left with the matrix element 〈1|P̂ |2〉.
As we mentioned, this amplitude is actually the scattering amplitude of a closed string

by a D-brane evaluated between generic closed string states. Such amplitude is computed

as a path integral over all string configurations satisfying prescribed boundary conditions.

One boundary condition is the Neumann or Dirichlet boundary condition at the slit. The

other are boundary conditions at τ = ±∞ that determine the initial and final state of

the string. Those we take to be Neumann since we are going to represent the state as

wave functions in the momentum representation. The path integral is quadratic so the

only object we need is the Green function on the cylinder with a slit. Given such Green

function, standard manipulations (see chapter 11 in [13]) give for the amplitude

A =

∫

dσ0f(σ0)〈{ki
rn}|e

P

rs,imn Nrs
i,nma†

irna†
ism

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (4.37)

where the coefficients N rs
i,nm are the Fourier modes of the Green function as defined in the

appendix and there is an undetermined measure f(σ0). The state |{ki
rn}〉 represents the

initial and final states in a occupation number notation. ki
rn is the occupation number of

the n oscillator mode in direction i and for the string r, r = 1 being the initial string and

r = 2 the final one. The derivation of this formula is rather lengthy and can be found in

section 11 of [13] as mentioned before. The relevant point here is that, having such formula

we can check that the resulting N rs
i,nm that we compute in the appendix, satisfy all required

equations (4.25)-(4.36). What we obtain is that Nrs
mn can be written as (for m + n 6= 0):

Nrs
mn(εi, σ0) = − i

8

(1 + εi)

m + n
(ar

mδn0 + as
nδm0) +

1

(m + n) sin σ0
Im (f r

mf s
n) . (4.38)

The coefficients f r
m and ar

m are given by linear combinations of Legendre polynomials as

described in the appendix.

To find the measure we can compute the scattering of a tachyon from a D-brane. Since

the tachyon is the vacuum state we get

A = 〈0|
∫

dσ0f(σ0)e
P

rs,imn Nrs
i,00a†

ir0a†
is0

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉. (4.39)

From the appendix, the 00 component of the Neumann coefficients is:

N rs
i,00 = (1 + εi)δ

rs ln
(

cos
σ0

2

)

+
1 − εi

2
ln

(

sin
σ0

2

)

. (4.40)
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Which gives

A =

∫

dσ0f(σ0)
[

cos
σ0

2

]4k2 [

sin
σ0

2

]q2

, (4.41)

where k is the momentum of the tachyon parallel to the brane (which is conserved) and

q = p1+p2 is the momentum transfer. We also note that since X+ = σ then P− = Pσ which

vanishes for a closed string. Therefore we can only propagate states with P− = 0. If we

propagate a boundary state this is not a problem because all parallel momenta vanish for

them. If we want to extend the result for generic states we can rely on Lorentz invariance

in the direction parallel to the brane and take k2 to be the full parallel momentum in the

final amplitude.

Now, following [23], we compute the tachyon scattering amplitude using two vertex

operators V = eipX inserted on the half-plane. The boundary conditions determine the

propagators to be 〈Xµ(z)Xν(w)〉 = −ηµν ln(z − w), 〈Xµ(z)X̃ν(w̄)〉 = −Sµν ln(z − w),

where Sµν is equal to ηµν up to a minus sign for Dirichlet coordinates. The amplitude is

proportional to

A ∼
∫

d2z1 d2z2 〈V (z1, z̄1)V (z2, z̄2)〉 (4.42)

∼
∫

d2z1 d2z2 |z1 − z̄1|p1Dp1|z1 − z2|2p1p2 |z1 − z̄2|2p1Dp2|z2 − z̄2|p2Dp2, (4.43)

where piDpj = piµpjνS
µν . The momenta satisfy p2

1,2 = −m2, with m the mass of the

tachyon. The expression is SL(2, R) invariant if m2 = −2 which determine the tachyon

mass. In that case we can factorize the volume of the Moebius group and set z1 = i, z2 = iy

getting (up to a normalization constant c3):

A = 4c3

∫ 1

0
dy(1 − y2) 2p1Dp1 (1 − y)2p1p2 (1 + y)2p1Dp2 (2y)p2Dp2 (4.44)

= c3

∫ π

0
dσ0

[

cos
σ0

2

]4k2−3 [

sin
σ0

2

]q2−3
, (4.45)

where we change variables y = (1 − sin σ0
2 )/(1 + sin σ0

2 ) as before and also decomposed

the momenta into parallel (p1)‖ = −(p2)‖ = k and perpendicular. The perpendicular

one only entered as q = p1 + p2. Comparing with the previous expression we get that

f(σ0) = 8 [sin σ0]
−3 as in [21].

Therefore the operator P̂0, corresponding to a slit whose center is at σ = 0, is given by

P̂0 = 8c3

∫ π

0
dσ0

1

sin3 σ0
e

P

rs,imn Nrs
i,nma†

irna†
ism

∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (4.46)

where
∏

i/εi=+1 is over the direction parallel to the brane (excluding the light-cone direc-

tions). We now have to integrate over the position of the center of the slit which gives

P̂ =

∫ 2π

0
dσ TσP̂0T

−1
σ , (4.47)
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where Tσ is the operator representing a translation in direction sigma by an amount σ.

This gives

P̂ =
1

π3

∫ 2π

0
dσ

∫ π

0
dσ0

1

sin3 σ0
e

P

rs,imn Nrs
i,nma†

irna†
isme−i(m+n)σ ∏

i/εi=+1

δ(pi
1 + pi

2)|0〉, (4.48)

where we anticipated that c3 = (2π)−3 from the next subsection.

In principle we have established that the Hamiltonian H = H0 − λP with P̂ given

by the previous expression, sums the planar diagrams of a bosonic string. We can have

a problem however if there are singularities that need to be subtracted when two slits

come together. If such extra terms are needed, they modify the operator P̂ . It should be

important to settle this issue. In any case we show in the next subsection that the operator

P̂ already contains important information about the closed string background.

4.2 Limit of small hole (σ0 → 0).

The operator P̂ acts non-locally on the closed string. It is clear however that it contains

a local part corresponding to very small holes. It is interesting to extract such part since

it contains a pole in the transverse momentum transfer q2 as q2 → 0 and therefore can be

described as a propagation of a string in a modified background.

Formally the limit corresponds to taking σ0 → 0 in P̂ (σ0) which can be easily done us-

ing the properties of the Neumann coefficients that we give in the appendix (see eq. (A.63)).

Expanding the exponent in P̂0 (i.e.eq. (4.46)) at quadratic order we obtain:

∑

rs,imn

′
N rs

imna†irma†isn =
∑

i,m6=0

1

|m|(a
†
i1m + a†i2m)(a†i10 + a†i20) −

∑

i,m6=0

1

|m|a
†
i1ma†i2,−m

+
∑

i,m6=0

1 + εi

2
σ0(a

†
i1m − a†i2m)(a†i10 + a†i20)

−σ2
0

8

∑

i,m6=0

(1 + εi)(a
†
i1m − a†i2m)(a†i10 − a†i20)

−σ2
0

8

∑

i,m6=0

(1 − εi)|m|(a†i1m + a†i2m)(a†i10 + a†i20)

+
σ2

0

8

∑

i,m>0,n>0

{

−(a†i1m − εia
†
i2m)(a†i1n − εia

†
i2n)

−(a†i1,−m − εia
†
i2,−m)(a†i1,−n − εia

†
i2,−n)

−2εi(a
†
i1m − εia

†
i2m)(a†i1,−n − εia

†
i2,−n)

}

, (4.49)

where the prime in the sum indicates that we extracted the term with m = n = 0 that we

consider separately. The sum over i runs over all spatial directions excluding the light-cone

directions.

The first thing is to identify the zero modes with the momenta: a†ir0 = pir. Having

done that we see that the term linear in σ0 is nonzero if εi = 1 which corresponds to

Neumann boundary conditions. However, in that case the momentum is conserved, namely
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pi1 + pi2 = a†i10 + a†i20 = 0. This eliminates the linear term and the first correction is

quadratic.

The zero order term gives exp(−∑

i,m6=0
1
|m|a

†
i1ma†i2,−m) which should correspond to

the identity operator, since, for σ0 = 0 there is no hole. To see that, consider just one

mode m and normalize canonically the creation operators by defining ā†irm = a†irm/
√

|m|.
Then we get

eā†
i1mā†

i2,−m |0〉1,m ⊗ |0〉2,−m =

∞
∑

Nm=0

(−1)Nm |Nm〉1m ⊗ |Nm〉2,−m = |I〉m. (4.50)

The first thing we see is that this state, that we denote as |I〉m is the identity operator

that identifies a state of string one with occupation number Nm with a state of the same

occupation number on string two but on the mode −m. This is because a left moving

excitation on string one looks like a right moving excitation when seen form the other end,

namely string two. Moreover we can see that

a†i1m|I〉m = −ai2,−m|I〉m. (4.51)

This means that we can consider all operators as acting on string two. The resulting

operator is a normal ordered function of a†i2m and ai2m acting on |I〉m. It is easy to see that

such function is the standard representation of the operator in the oscillator basis, where

we can now eliminate the label 2. In this way we go from the representation of the operator

in terms of a two string vertex into the standard representation in terms of annihilation

and creation operators. Using the rule that a†i1m → −ai2,−m we get that

(a†i1m − εia
†
i2m) →

{

εi = +1, (a†i1m − εia
†
i2m) = −2p−m

εi = −1, (a†i1m − εia
†
i2m) = i|m|x−m

, (4.52)

where xm and pm are the Fourier components of position and momenta of string two.

Replacing in the previous expansion we obtain

∑

rs,imn

′
N rs

imna†irma†isn → iqȳ +
i

4
σ2

0q.y
′′ − σ2

0

8
y′y′ + σ2

0 p̄k − σ2
0

2
p̄p̄ + · · · , (4.53)

where the operators are evaluated at σ = 0 since we obtain the sums of Fourier modes

without the exponents eimσ . This is correct since the small hole is inserted at σ = 0 so we

expect P̂0 to act only there. On the other hand, the zero mode contribution (m = n = 0)

together with the measure f(σ0) give

[

cos σ0
2

]4k2 [

sin σ0
2

]q2

sin3 σ0
' σq2−3

0

2q2

[

1 − σ2
0

(

1

2
k2 +

1

24
q2 − 1

2
+ · · ·

)]

. (4.54)

Putting all together, we find,

P̂0 ' 2c3

(π

2

)q2−2 1

q2 − 2
eiqȳ − 8c3

q2

(π

2

)q2
(

1

2
(k − p̄)2 +

1

8
y′y′ +

1

24
q2 − 1

2
− i

4
qy′′

)

eiqȳ.

(4.55)
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The first term has a pole at the tachyon mass and therefore is an artifact of keeping only

the bosonic sector. We now concentrate in the q2 → 0 pole and keep only the singular

terms (i.e. we put q2 = 0 everywhere except in the denominator). The resulting operator

is in a mixed base since the zero mode of Y is in momentum representation and the other

modes are in position representation. We can change basis:

〈y20|P̂0|y10〉 =

∫

d6q1d
6q2

(2π)6
eiq1y10+iq2y20〈q2|P̂ |q1〉 (4.56)

=

∫

d6q1d
6q2

(2π)6
eiq1y10+iq2y20P̂ (q = q1 + q2) (4.57)

= δ(6)(y10 − y20)

∫

d6qeiqy20P̂ (q), (4.58)

where we used that the matrix element of P̂ depends only on q = q1+q2. The delta function

δ(6)(y10 − y20) should be interpreted as 〈y20|y10〉 and therefore the rest is the operator in

this basis. We now also use that

ΠX =
1

2π
(−k + p̄), Y = y20 + ȳ, (4.59)

since k = p1 = −p2 is the zero mode part of the momentum and p̄ is the oscillator part

and the same with y20 and ȳ. Finally we need

∫

d6q
1

q2
eiqy =

16π3

y4
,

∫

d6q
qj

q2
eiqy = −64π3

y6
yj, (4.60)

to obtain the result that

P̂0 ' −16π3c3

Y 4

(

(4πΠX)2 + Y ′Y ′ − 4 + 4
Y Y ′′

Y 2

)

, (q2 → 0 pole part), (4.61)

where all fields on the right hand side are evaluated at σ = 0. One thing to notice is that,

in the denominator, we obtained Y , the full quantum operator, not only the zero mode.

To apply such operator we should remember that it is normally ordered.

Now we have to translate an integrate on sigma (see eq. (4.47) and (4.48) ). The result

is simply to evaluate the fields at σ and integrate:

P̂ ' −
∫ π

−π
dσ

16π3c3

Y 4

(

(4πΠX)2 + Y ′Y ′ − 4 + 4
Y Y ′′

Y 2

)

, (q2 → 0 pole part). (4.62)

To this we should add the free Hamiltonian:

H0 =
1

8π

∫

(4πΠX)2 + (4πΠY )2 + X ′2 + Y ′2 (4.63)

Now we can compare with (3.9). After identifying α′ = 2, we see that there is partial

agreement if we identify c3 = (2π)−3. However, there are extra terms that can be attributed

to the fact that we consider only the bosonic sector. It should be interesting to do the

full superstring calculation to see if those terms disappear. In the next subsection we do

some preliminary steps in that direction but leave the full computation for future work. Of
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course there are also all the extra terms that do not have a pole in q2 → 0. These terms

we interpret as further corrections to the Hamiltonian. In fact, on the closed string side

we only computed the classical Hamiltonian whereas the one we compute here is supposed

to be the full quantum Hamiltonian of the closed string. We should note that there might

be further corrections if one has to subtract infinities when to slits come close together. It

is known that this is a problem in the superstring. It should be important to understand

this issue in more detail. It should also be interesting to study small holes in a covariant

gauge perhaps following ideas in [24, 17].

4.3 The superstring

In this section, for completeness we include the computation of the operator P̂ in the

superstring case. This is because the Neumann coefficients necessary for the superstring

are the same as the one we already have. However, the superstring also has extra operators

that should be included in the end point of the slit where the Mandelstam map is singular.

Although these operators are well understood, the consequences of including them in the

operator P̂ are subtle, in particular if we investigate the σ0 → 0 limit. For that reason

we leave this interesting problem for future work and present here only the results that

are essentially an extension of the calculations we have already done. Moreover, if we

were to compute P̂ (σ0 → 0) as we did in the bosonic sector, the action of the superstring

moving in the full D3-brane background is not known so we cannot compare to anything.

More interesting is to consider its field theory limit where the operator P̂ contains the

information of the sum of planar diagrams of the N = 4 SYM theory. In this case we can

compare to the action [4] written in σ-gauge. However instead of taking the field theory

limit of the stringy expression, it seems easier to derive P̂ directly from the field theory

using a slightly different method. We expect to report on this in the near future.

For the superstring we consider IIB string theory in the SU(4) × U(1) light-cone

Green-Schwarz formalism, again following [13] to which we refer the reader for notation and

conventions8. We introduce a set of right moving fermions and their canonical conjugates

with mode expansions

θA =

∞
∑

n=−∞
QA

n einσ (4.64)

λA =
1

2π

∞
∑

n=−∞
QnAeinσ, (4.65)

and commutation relations

{QnA, QB
m} = δm+nδB

A . (4.66)

The index A is in the fundamental or anti-fundamental of SU(4) depending if it is an upper

or lower index. We also introduce left moving fermions with mode expansions

θ̃A =

∞
∑

n=−∞
Q̃A

n einσ (4.67)

8This section is a bit aside of the main line of development so we did not try to make it self-contained.
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λ̃A =
1

2π

∞
∑

n=−∞
Q̃nAeinσ, (4.68)

and commutation relations

{Q̃nA, Q̃B
m} = δm+nδB

A . (4.69)

We have a set of linearly realized supercharges:

Q+
A = Q0A, Q+A = QA

0 , Q̃+
A = Q̃0A, Q̃+A = Q̃A

0 , (4.70)

and a set of non-linearly realized:

Q−A = 2
√

2

∫ π

−π
ρI

ABAIθB + 8π

∫ π

−π
ALλA (4.71)

Q̃−A = 2
√

2

∫ π

−π
ρI

ABÃI θ̃B + 8π

∫ π

−π
ÃLλ̃A (4.72)

QA
− = −4

√
2π

∫ π

−π
ρIABAIλB + 4

∫ π

−π
ARθA (4.73)

Q̃A
− = −4

√
2π

∫ π

−π
ρIABÃI λ̃B + 4

∫ π

−π
ÃRθ̃A, (4.74)

where

AI = P I − 1

4π
∂σY I , ÃI = P I +

1

4π
∂σY I , (4.75)

and the same for AR,L. They have the commutation relations

[

A(σ),A(σ′)
]

= − i

2π
∂σδ(σ − σ′),

[

Ã(σ), Ã(σ′)
]

=
i

2π
∂σδ(σ − σ′),

[

A(σ), Ã(σ′)
]

= 0.

(4.76)

It is useful to have a list of supersymmetry variations of the different fields:

[

Q−A,AI
]

= i
√

2
π ρI

AB∂σθB,
[

Q̃−A, ÃI
]

= − i
√

2
π ρI

AB∂σ θ̃B,

[

Q−A,AR
]

= 4i∂σλA,
[

Q̃−A, ÃR
]

= −4i∂σλ̃A,

{

Q−A, θB
}

= 8πδB
AAL,

{

Q̃−A, θ̃B
}

= 8πδB
A ÃL,

{Q−A, λB} = 2
√

2ρI
ABAI ,

{

Q̃−A, λ̃B

}

= 2
√

2ρI
ABÃI ,

[

QA
−,AI

]

= −2i
√

2ρIAB∂σλB ,
[

Q̃A
−, ÃI

]

= 2i
√

2ρIAB∂σλ̃B ,

[

QA
−,AL

]

= 2i
π ∂σθA,

[

Q̃A
−, ÃL

]

= −2i
π ∂σ θ̃A,

{

QA
−, θB

}

= −4
√

2πρIABAI ,
{

Q̃A
−, θ̃B

}

= −4
√

2πρIABÃI ,

{

QA
−, λB

}

= 4δA
BAR,

{

Q̃A
−, λB

}

= 4δA
BÃR,

{

QA
+, λB

}

= 1
2π δA

B

{

Q̃A
+, λ̃B

}

= 1
2π δA

B ,

{

Q+A, θB
}

= δB
A

{

Q̃+A, θ̃B
}

= δB
A

(4.77)
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The supersymmetry algebra is

{

Q+
A, Q−

B

}

=
√

2P IρI
BA, (4.78)

{

Q+
A, Q−B

}

= 2PRδB
A , (4.79)

{

Q+A, Q−
B

}

= 2PLδA
B , (4.80)

{

Q+A, Q−B
}

= −
√

2P IρIBA, (4.81)

{

Q−A, Q−
B

}

= 2HδA
B , (4.82)

{

Q+A, Q+
B

}

= δA
B , (4.83)

and the same in the left moving sector. The Hamiltonian H is given by

H = P 2 + 4N + 4Ñ , (4.84)

where N , Ñ are the left and right moving occupation numbers (N = Ñ by the level

matching condition). In terms of oscillators they are given by

N =
∑

n≥1

(αi
n)†αi

n +
∑

m≥1

mQB
−mQBm +

∑

m≥1

mQB,−mQB
m, (4.85)

Ñ =
∑

n≥1

(α̃i
n)†α̃i

n +
∑

m≥1

mQ̃B
−mQ̃Bm +

∑

m≥1

mQ̃B,−mQ̃B
m, , (4.86)

The occupation numbers are positive so we define the vacuum |0〉 as

QmB |0〉 = 0, QB
m|0〉 = 0, αi

n|0〉 = 0, (m ≥ 1), (4.87)

and the same for the left movers.

Now we have to find out what condition we should impose on the boundary state |B〉
that corresponds to the D3-brane. We can try the following conditions compatible with

the SU(4) × U(1) symmetry.

(

AL,R + εL,RÃL,R
)

|B〉 = 0, (4.88)
(

AI + ε⊥ÃI
)

|B〉 = 0, (4.89)
(

θA − µθ̃A
)

|B〉 = 0, (4.90)
(

λA +
1

µ
λ̃A

)

|B〉 = 0. (4.91)

Since these conditions are imposed on a state, they have to commute among themselves.

This implies the relation between the last two conditions for θ and λ. In the open string

channel one has to impose conditions on the coordinates and therefore they have to be com-

patible with the canonical commutation relations (in that case one does not get the minus
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sign in (4.90)). The conditions should preserve half the supersymmetries. As candidates

to preserved supersymmetries we take

QA
+ + ν1Q̃

A
+, Q+A + ν2Q̃+A, Q−A + ν3Q̃−A, QA

− + ν4Q̃
A
−. (4.92)

These supersymmetries should commute with all the previous conditions. We then get that

εL = εR, µ2 = −ε⊥εL, ν1 = −µ, ν2 =
1

µ
, ν3 = ε⊥µ, ν4 = εRµ, ε2

L = 1, ε2
⊥ = 1, (4.93)

which have the solutions

• D1 brane, εL = ε⊥ = −1, µ = ±i, ν3 = ∓i, ν4 = ∓i ,

• D3 brane, εL = 1, ε⊥ = −1, µ = ±1, ν3 = ∓1, ν4 = ±1 ,

• D9 brane, εL = ε⊥ = 1, µ = ±i, ν3 = ±i, ν4 = ±i .

The two signs correspond to branes and anti-branes. We are interested in D3-branes so we

impose

(

AL,R + ÃL,R
)

|B〉 = 0, (4.94)
(

AI − ÃI
)

|B〉 = 0 (4.95)
(

θA − θ̃A
)

|B〉 = 0, (4.96)
(

λA + λ̃A

)

|B〉 = 0, (4.97)

which preserve

QA
+ + Q̃A

+, Q+A − Q̃+A, Q−A − Q̃−A, QA
− + Q̃A

−. (4.98)

This is regarding a boundary state. In the case of the vertex |V 〉 we should impose these

conditions on the slit and continuity of the coordinates in the rest. This leads to the

conditions

(

θA
1 − θA

2 − θ̃A
1 + θ̃A

2

)

|V 〉 = 0, −π ≤ σ ≤ π, (4.99)
(

λ1A + λ2A + λ̃1A + λ̃2A

)

|V 〉 = 0, −π ≤ σ ≤ π, (4.100)
(

θA
1 − θA

2 + θ̃A
1 − θ̃A

2

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.101)
(

λ1A + λ2A − λ̃1A − λ̃2A

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.102)
(

θA
1 + θA

2 − θ̃A
1 − θ̃A

2

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0, (4.103)
(

λ1A − λ2A + λ̃1A − λ̃2A

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0. (4.104)
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To construct the vertex state it is useful to define new fermionic variables:

ΞA = 1√
2

(

θA
1 + θ̃A

2

)

, Ξ̄A = 1√
2

(

λ1A + λ̃2A

)

,

χA = 1√
2

(

λ2A + λ̃1A

)

, χ̄A = 1√
2

(

θA
2 + θ̃A

1

)

,

cA = 1√
2

(

λ̃1A − λ2A

)

, c̄A = 1√
2

(

θ̃A
1 − θA

2

)

,

dA = 1√
2

(

θA
1 − θ̃A

2

)

, d̄A = 1√
2

(

λ1A − λ̃2A

)

(4.105)

in terms of which the conditions are

(

χA + Ξ̄A

)

|V 〉 = 0, −π ≤ σ ≤ π, (4.106)
(

ΞA − χ̄A
)

|V 〉 = 0, −π ≤ σ ≤ π, (4.107)
(

c̄A + dA
)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.108)
(

d̄A − cA

)

|V 〉 = 0, σ0 ≤ |σ| ≤ π, (4.109)
(

dA − c̄A
)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0, (4.110)
(

d̄A + cA

)

|V 〉 = 0, −σ0 ≤ σ ≤ σ0. (4.111)

The first condition is solved by the state

e
P

m≥1(χmAΞA
−m+Ξ̄A,−mχ̄A

m)
∏

B

(χ0B + Ξ̄0B)|0〉. (4.112)

The other four conditions require more work. We introduce yet another set of fermionic

modes
a†nA = cnA , if (n > 0) bA†

n = c̄A
n , if (n > 0),

bA†
n = dA

n , if (n < 0) a†nA = d̄nA , if (n < 0),

aA
n = c̄A

n , if (n < 0) bnA = cnA , if (n < 0),

bnA = d̄nA , if (n > 0) aA
n = dA

n , if (n > 0),

(4.113)

and propose a state

|V 〉 = e
P

m,n6=0 Vnm|m|bA†
n a†

mA+
P

m(b̄A
0 αm+āA

0 βm)a†
mA |0〉, (4.114)

which requires that

|σ| ≤ σ0



















∑

n 6=0 Vnm|m|einσ + 2αm = −e−imσ , (m 6= 0),
∑

n 6=0 nVmneinσ = sign(m)e−imσ , (m 6= 0),
∑

m6=0 sign(m)αme−imσ = 0 ,
∑

m6=0 sign(m)βme−imσ = −1 ,

(4.115)

and

σ0 ≤ |σ| ≤ π



















−∑

n 6=0 sign(n)Vnm|m|einσ + 2βm = sign(m)e−imσ , (m 6= 0),
∑

n 6=0 |n|Vmneinσ = e−imσ , (m 6= 0),
∑

m αmeimσ = 1 ,
∑

m βmeimσ = 0 .

(4.116)
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The zero modes were defined as

a0A = d̄0A − c0A, (4.117)

āA
0 = dA

0 − c̄A
0 , (4.118)

b0A = c0A + d̄0A, (4.119)

b̄A
0 = c̄A

0 + dA
0 , (4.120)

and obey

{a0A, āB
0 } = 2δB

A , {b0A, b̄B
0 } = 2δB

A . (4.121)

The vacuum obeys

a0A|0〉 = 0, b0A|0〉 = 0. (4.122)

As usual, from the commutations relations we see that zero modes can be represented as

gamma matrices.

Going back to our main problem, using the properties of the Neumann coefficients that

we derive in the appendix we obtain that the equations for the coefficients Vmn, αm, βm

are solved by

Vnm = −2
(

N11
nm(εi = −1) + N12

nm(εi = −1)
)

, (4.123)

αm = −|m|
(

N11
0m(εi = −1) + N12

0m(εi = −1)
)

, (4.124)

βm = −m
(

N12
m0(εi = 1) − N11

m0(εi = 1)
)

. (4.125)

This completely determines the state that imposes continuity and the correct conditions on

the slit as the product of (4.112) and (4.114). However it is well-known that to reproduce

the correct string amplitudes, one has to insert extra operators associated with the end

points of the slit where the conformal map is singular. These operators are known in the

open string sector. One just has to write them after doing a σ ↔ τ interchange. After

that one should compute the measure by comparison with known D3-brane scattering

amplitudes. We leave this problem for the future.

One comment that we have to make, however, is about terms of higher order in λ. The

theory is still supersymmetric so we should now have that

{

Q−A, Q−
B

}

= 2(H0 − λP̂ )δA
B , (4.126)

This means that Q−A also has terms of order λ at least: Q−A = Q−A
0 + λQ−A

1 . If

{Q−A
1 , Q−

B1} 6= 0 this implies that H has at least terms of order λ2. If such higher order

terms are present one might be able to determine them by the closure of the supersymme-

try algebra. It is not obvious that this can be done since, already from the closed string

point of view the theory is possibly not well-defined due to these higher order terms that

can appear in the Hamiltonian9. A natural hope is that these problems are absent if one

wants to study just the field theory limit, what is, after all, the most important case.

About the limit α′ → 0, it is possibly that is trivial in the case of the vertex. This

is because the vertex has a naive scale invariance in X → µX and Y → Y/µ since the

9I am grateful to N. Berkovits for a comment on this issue.
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boundary conditions are invariant under such rescaling. If it turns out that the naive

invariance is valid at the quantum level, namely for the full vertex, then one should be able

to rescale out α′. In that case the only thing we would need to do is to modify H0 as we

found in section 3 from the point of view of the closed string in the D-brane background.

5. Relation to field theory and σ ↔ τ duals

One would like to understand the planar diagrams directly in field theory. Although we do

not analyze this problem in the present paper, there are some points which already follow

from our previous discussion.

Any field theory with fields in the adjoint can be represented in terms of diagrams as in

figure 2 in light cone frame. The property however that we need is that the contribution of

any such diagram can be represented also as a propagation in τ after a σ ↔ τ interchange.

It appears from our discussion that this should be possible whenever we can embed the

theory in a string theory which has a local world-sheet action. In other cases it is not clear.

However we should note that we are asking, not that the theory has a string dual but

simply that it can be written as propagation of a Hamiltonian of the type H0 − λP̂ in the

crossed channel. This appears a weaker condition and might be more easily satisfied. To

be more precise, in the standard representation, the “world-sheet” theory describing the

field theory is local in τ but not in σ. We want to see if it is possible a representation local

in σ and possibly not in τ . After a σ ↔ τ transposition the locality in σ becomes local

in τ which means that we have a Hamiltonian representation (with H = H0 − λP̂ ). This

new H we define as the σ ↔ τ dual of the original theory which contains the information

about the planar diagrams.

Going back to section 3, the near-horizon limit suggested that

H0 =
1

2

∫

dσ
(

Π2
Y + X ′2) (5.1)

should be the σ ↔ τ dual of a free field theory. Let us study what this Hamiltonian gives

when used in a world-sheet diagram. Consider first

H01 =
1

2

∫

dσX ′2 (5.2)

The Hamiltonian is diagonal in the X basis, therefore the propagator is

〈Xf (σ)|e−τH01 |Xi(σ)〉 =
∏

σ

δ (Xf (σ) − Xi(σ)) e−
1
2
τ

R

dσX′
i
2

(5.3)

In a diagram as that in figure 5(a) we have that the boundary conditions are Neumann,

which is equivalent to say that we should integrate over all boundary values of X with unit

measure. In particular note that the values of X are different on both sides of the slit. On

the other hand we should take into account that the propagator has a delta function which

leads to the identification of boundary conditions as indicated. This gives for the value of

such diagram

Z1 =

∫

DXa(σ)DXb(σ)DXc(σ)e
− 1

2
τ

R σ1
0 X′

c
2− 1

2
(τ−τ0)

R σ1+σ2
σ1

X′
a
2− 1

2
τ0

R σ1+σ2
σ1

X′
b
2

(5.4)
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These are one-dimensional path integrals. Continuity of the coordinates and periodicity in

sigma imply that

Xa(σ1) = Xb(σ1) = Xc(σ1) = x1, Xa(0) = Xb(0) = Xc(0) = x0 (5.5)

Therefore we get

Z1 = N
∫

d2x1d
2x0e

− τ
2σ1

(x1−x0)2− τ−τ0
2σ2

(x1−x0)2− τ0
2σ2

(x1−x0)2 (5.6)

= N
∫

d2X0

∫

d2xe
− τ

2σ1
x2− τ−τ0

2σ2
x2− τ0

2σ2
x2

(5.7)

where we get a divergence from the zero mode X0 = x1 + x0. It is clearly present since

the Hamiltonian is proportional to X ′2 and seems to play no role so we discard it. More

importantly we get also an infinite measure N which depends on the variables τ ,τ0,σ1 and

σ2. We do not attempt to evaluate it in this paper.

Consider now

H02 =
1

2

∫

dσΠ2
Y (5.8)

The propagator is

〈Yf (σ)|e−τH01 |Yi(σ)〉 = N2e
− 1

2τ

R

dσ(Yf (σ)−Yi(σ))
2

(5.9)

again up to a normalization factor N2. For the same diagram (see figure 5(b))we now get

Z2 = N2e
−σ2m2

2τ e
−σ2m2

2τ0 (5.10)

(  )σ

(  )σ (  )σ

(  )σ
(  )σ

(  )σx Xc

Xc

0
x

1

Xb

bX
Xa

0
xaX

τ

τ0

σ σ1 2

Y = L

Y = 0

Y = 0

(a) (b)

= m

Figure 5: One loop diagram computed with the Hamiltonian of eq. (5.1). The coordinate X does

not change under propagation but we should integrate over all possible boundary conditions. The

coordinate Y is fixed at the boundary but it can change in time.

If we now make a σ ↔ τ rotation we get a diagram as in figure 6. In light cone frame

for a φ3 theory this diagram gives

Z =

∫

d2p⊥

∫

d2k⊥
1

|p+|e
− p2

⊥+m2

2p+ t0 1

|k+|e
− k2

⊥
+m2

2k+ (t−t0) 1

|p+ − k+|e
− (p⊥−k⊥)2+m2

2(p+−k+)
(t−t0)

(5.11)
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Now we make the identifications

k+ = τ0, p+ = τ, t0 = σ1, t = σ1 + σ2, (5.12)

and use the formula
∫

d2x e−iq⊥xe−
1
2

τx2

σ =
2πσ

τ
e−

1
2

σq2⊥
τ . (5.13)

We obtain

Z =

∫

d2p⊥d2k⊥d2x1d
2x2d

2x3

(2π)3σ1σ2
2

e−ip⊥x1+ik⊥x2+i(p−k)⊥x3e
− τx2

1
2σ1

− τx2
2

2σ2
− (τ−τ0)x2

3
2σ2 e

−σ1m2

2τ
−σ2m2

2τ0

=
1

2π

∫

d2x
1

σ1σ2
2

e
− τx2

2σ1
− τx2

2σ2
− (τ−τ0)x2

2σ2 e
−σ1m2

2τ
−σ2m2

2τ0 . (5.14)

In this way we recover a similar expression as one gets by multiplying Z1Z2 in the previous

case. Of course nothing of this is truly meaningful if we do not find a way to regularize

the measures N1 and N2 such that Z = Z1Z2. We do not attempt to do so here. The

correct measure can only be obtained after considering all the fields in the theory. We only

wanted to show that the Hamiltonian H0 seems a reasonable starting point to describe a

field theory. On the other hand, the fact that we obtained the correct dependence in x is

meaningful, even if it is integrated, because the position x has the same meaning on both

calculations. Namely, is the difference between the position of the particle at σ = 0 and

σ = σ1 (or t = 0 and t = t0).

6. Conclusions

p

k p−k

t

t

0
+ + +

+

Figure 6: Diagram of

figure 5 after a σ ↔
τ rotation. It should

be interpreted as a field

theory diagram.

We have studied the sum of planar diagrams in an open string

theory and concluded that, under certain assumptions about the

general form of the higher order diagrams, the sum exponentiates

and determines a Hamiltonian of the form H = H0 −λP̂ . We also

discussed the possible existence of higher order corrections that we

were unable to determine at this stage. On the other hand, this

Hamiltonian should describe the propagation of a closed string in

a modified background which, in the same gauge, turned out to be

linear in λ. In fact, in the limit of small holes, we obtain partial

agreement between the two pictures. The difference is attributed

to the fact that we studied only the bosonic sector of the theory.

For the superstring a similar result should follow. However, in

that case, it is even more clear that there could be also corrections

of higher order in λ, due to contact terms. It seems important

to clarify this issue. In any case it seems to us that a great deal

of information, e.g. the form of the dual background, should be

already contained in P̂ . The linear dependence in λ is valid for any Dp-brane except that

in the general case there is a position dependent dilaton in the background. It should be

interesting to understand it from the open string point of view. It should also be interesting
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to understand the operator P̂ for D-brane bound states, moving branes etc. We should

also note that the same ideas can be applied to the computation of scattering amplitudes.

In this case the “dual” string would be infinitely long (see figure 3).

One can also think of applying these ideas directly to a field theory. What we need

is that the planar diagrams in light cone gauge have a dual interpretation as propagation

in time in the (σ ↔ τ) dual channel. This seems true if the field theory can be embedded

into a string theory. However one is asking less, so it can be a more generic property.

Whenever this happens, and if the relative weight of the diagrams is correct, the sum of

planar diagrams should exponentiate allowing one to define the (σ ↔ τ) dual Hamiltonian

of the theory. This is a Hamiltonian for a one dimensional system and its properties

determine the properties of the planar diagrams. If this actually happens or not should be

analyzed in each particular field theory.

A different avenue of investigation could be to sew two diagrams of the type appearing

in figure 3 to construct a closed string amplitude. The corresponding operator P̂ should

be described by a four string vertex. The meaning of summing those diagrams however is

not clear to us.

To summarize, we have found that in this kind of light-cone gauge, that we call σ-

gauge, the Hamiltonian of the string in a D-brane background is linear in λ = gsN . We

were able to reproduce this from the open string point of view with a naive exponentiation

of the operator P̂ . This could be just a coincidence due to supersymmetry or it could mean

something deeper. It remains to be seen what extra contributions, if any, the operator P̂

has. It seems important also to understand if the operator P̂ can be constructed directly

in the field theory. If it can be done, studying the operator H = H0 − λP̂ should give

valuable information about the planar diagrams, for example, a tachyonic ground state

can be a signal of a phase transition such as confinement. As can be seen from eq. (3.10),

one thing that should follow in the field theory limit, is that whereas H0 describes a “fluffy”

or “rigid” string (depending on the direction), the operator P̂ gives the string a tension.

We leave all these questions for future work.
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A. Neumann coefficients

In this section we compute the Neumann coefficients. To do that we have to compute

the Green function in the infinite cylinder with a slit where the field obeys Neumann or
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Dirichlet boundary conditions. One way to do that is to use a conformal map to map the

cylinder with a slit to the upper half plane in such a way that the slit is mapped to the

real axis. By composing the standard exponential map with appropriate inversions and

translations such conformal transformation is not difficult to find. The result is

ρ = ln
(z − i)(z + iy)

(z + i)(z − iy)
, (A.1)

where ρ = τ + iσ and z parameterized the upper half plane. We illustrate this map in

figure 7. The constant y is related to the size of the slit by

y =
1 − sin σ0

2

1 + sin σ0
2

. (A.2)

The point τ = −∞ maps to z = i and τ = +∞ to z = iy. The inverse map is given by

z±(u) = − i

u − 1

1

1 + sin σ0
2

{

(1 + u) sin
σ0

2
±

√

(u − eiσ0)(u − e−iσ0)

}

, (A.3)

where u = eρ.

y

i

iy

z

0

π

π

−σ

σ0

−

τ =0

0

Figure 7: Mandelstam map for the strip with a slit into the upper half plane. The point at

τ = ±∞ map to z = iy and z = i whereas the slit maps to the real axis. The dotted line at τ = 0

and σ0 ≤ |σ| ≤ π maps to the half circle of radius
√

y.

There is a sign ambiguity that has to be fixed. One can easily see that for u → 0 we

should take z+ and for u → ∞ we should use z−. Off course by appropriately defining the

cut in the square root we obtain a function analytic in the region parameterized by ρ. In

the regions u → 0 and u → ∞ we can get a series expansion as:

z1(u) = z+(u) =

∞
∑

m=0

amum, (A.4)

z2(u) = z−(u) =
∞
∑

m=0

bm

um
. (A.5)

We already know that a0 = i and b0 = iy. The other coefficients are given by

am =
2i

m(1 + sin σ0
2 )

m
∑

l=1

m!

(m + l)!
l(−)l

[

1 + sin σ0
2

cos σ0
2

]l

Pl
m(cos σ0) (A.6)
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= 2i
sin σ0

2

1 + sin σ0
2

+
i

1 + sin σ0
2

m
∑

l=1

1

l
[Pl−2(cos σ0) − cos σ0Pl−1(cos σ0)] , (A.7)

bm =
2i

m(1 + sin σ0
2 )

m
∑

l=1

m!

(m + l)!
l

[

cos σ0
2

1 + sin σ0
2

]l

Pl
m(cos σ0) (A.8)

= −2i
sin σ0

2

1 + sin σ0
2

+
i

1 + sin σ0
2

m
∑

l=1

1

l
[Pl−2(cos σ0) − cos σ0Pl−1(cos σ0)] , (A.9)

where we gave two alternative expressions. The first uses associated Legendre functions

Pl
m(cos σ0) and the other Legendre polynomials.

Once we have mapped the problem to the upper half plane, computing the Green

function is trivial. We obtain

G(z, z′) = ln |z − z′| + εi ln |z − z̄′|, (A.10)

where εi = 1 for Neumann boundary conditions and εi = −1 for Dirichlet. We can define

now four functions

Nrs(u, u′) = G(zr(u), zs(u
′)) − δrs ln |u − u′|, (A.11)

with r, s = 1, 2 and we note that zr(u) = −zr(ū). We also extracted the logarithmic

singularity as is conventional. Each function can be expanded as a power series in u and

u′ using (A.5). After that we replace u = eiσ, u′ = eiσ′
. Thus, we obtain

Nrs(u, u′) =

∞
∑

m,n=∞
Nrs

mn(εi, σ0)e
inσeimσ′

. (A.12)

The coefficients Nrs
mn(εi, σ0) are precisely the Neumann coefficients we want to find. If we

expand G we obtain coefficients

Grs
mn = Nrs

mn − 1

2|n|δn+mδrs. (A.13)

The difference is just the expansion of ln |u − u′|.
A straight-forward Taylor expansion can be used to compute a few of the coefficients.

A more practical method of computation uses a trick. It is based on the fact that, by using

the chain rule, we can obtain that

(∂σ + ∂σ′)G = (1 + εi)
z + z̄ + z′ + z̄′

4(1 − y)
(A.14)

+

√
y(1 + y)2

8(1 − y)

[(

1

z +
√

y
+

εi

z̄ +
√

y

) (

1

z′ +
√

y
+

εi

z̄′ +
√

y

)

(A.15)

−
(

1

z −√
y

+
εi

z̄ −√
y

)(

1

z′ −√
y

+
εi

z̄′ −√
y

)]

, (A.16)

the right hand side is a sum of terms which are factorized, namely are a product of a

function of z times a function of z′. We can then expand each of them and multiply the

coefficients. The result is

Nrs
mn(εi, σ0) = − i

8

(1 + εi)

m + n
(ar

mδn0 + as
nδm0) +

1

(m + n) sin σ0
Im (f r

mf s
n) , (A.17)
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where

a1,2
m = 2i ± i

sin σ0
2

m
∑

l=1

1

l
(Pl−2(cos σ0) − cos σ0Pl−1(cos σ0)) , m > 0, (A.18)

and ar
m = −ar

−m. The coefficients f r
m are given by

f1
m>0 = −f̄m, f1

m<0 = −εif−m, f2
m6=0 = −εif

1
m, (A.19)

with

fm>0 = − i

m
ei

σ0
2

m
∑

l=1

(−i)lm!

(m + l)!
lPl

m(cos σ0). (A.20)

Also,

f1
0 =

1

2

[

(1 + εi)(1 − sin
σ0

2
) − i(1 − εi) cos

σ0

2

]

, (A.21)

f2
0 =

1

2

[

(1 + εi)(1 + sin
σ0

2
) − i(1 − εi) cos

σ0

2

]

. (A.22)

The result is valid when m + n 6= 0. If not we obtain

N11
m,−m = − εi

2m2

{

m−1
∑

l=1

l
m!(m − l − 1)!

(m + l)!(m − 1)!
Pl

m(cos σ0)P
l
m−1(cos σ0) (A.23)

+
(−)mmzm

4

(1 − z4)2m−1

(

2m − 1

m − 1

)

F (1, 1 − m;m + 1; z4)

}

, (A.24)

and

N12
m,−m + εiN

11
m,−m = − 1

2|m| , (A.25)

where z4 = − sin2 σ0
2

cos2
σ0
2

and F denotes a hypergeometric function which in this case reduces

to a polynomial. We also have

N rs
i,00 = (1 + εi)δ

rs ln
(

cos
σ0

2

)

+
1 − εi

2
ln

(

sin
σ0

2

)

. (A.26)

To obtain the results we used the fact that fm and am can be represented as contour

integrals through

fm(y) =
i
√

y

2πm

∮

i
dz

1

(z −√
y)2

(

(z + i)(z − iy)

(z − i)(z + iy)

)m

, (A.27)

am(y) = − i

2πm

∮

i
dz

(

(z + i)(z − iy)

(z − i)(z + iy)

)m

. (A.28)

where the parameter y was defined in eq. (A.2). Here am is the one defined in (A.6) and

is related to ar
m due to eq. (A.16) by

a1
m =

2

1 − y
am =

1 + sin σ0
2

sin σ0
2

am, (m ≥ 1) (A.29)
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Using the method of residues we obtained the result in terms of sums that can be computed

using

m−l
∑

p=0

(

m

p

)(

m

p + l

)

(

−1 − cos σ0

1 + cos σ0

)p

=
2mm!

(m + l)!

(−1)l

(1 + cos σ0)m

(

sin σ0

1 + cos σ0

)l

Pl
m(cos σ0)

(A.30)

To avoid confusion we recall the definition of associated Legendre functions:

Pl
m(x) = (−1)l(1 − x2)

l
2

dl

dxl
Pm(x) (A.31)

where Pm(x) are the standard Legendre polynomials.

A.1 Properties of the Neumann coefficients

From the calculation we did one can find the following identities

N12
mn + εiN

22
mn = − 1

2|m|δn,−m +
(1 + εi)

2|m| δn0, m 6= 0, (A.32)

N12
mn + εiN

11
mn = − 1

2|n|δm,−n +
(1 + εi)

2|n| δm0, n 6= 0. (A.33)

Other identities follow from the value of G at τ = 0. For example, from the Dirichlet

boundary condition, we know that, if εi = −1, then G(σ, σ′) = 0 for −σ0 < σ < σ0. In

terms of Fourier components this can be written as

∑

n

einσGrs
nm = 0, −σ0 < σ < σ0, εi = −1, (A.34)

In the same way we can derive other identities. They follow from the value of z when

τ = 0. A simple calculation reveals that z+(eiφ) is real for −σ0 < φ < σ0 and is equal to

z+(eiφ) =
√

yeiΦ for σ0 < φ < 2π − σ0 with cos Φ = − tan σ0
2 cotanφ

2 . This means that the

circle τ = 0 maps to the real axis and a circle of radius
√

y. The two sides of the slit map

to different regions of the real axis corresponding to |Re(z)| greater or smaller than
√

y.

If z is real and εi = −1 then G(z, z′) = 0 which is what we used to derive eq. (A.34). If

εi = 1 then it seems that Im(∂zG) = 0 if z is real, but there is a possible singularity if z′

is also real. Taking z′ = x′ real and taking the limit z → x we get

Im(∂zG) = −πδ(x − x′). (A.35)

Going to variables φ ,φ′ and taking the Fourier transform we obtain

∑

n

|n|einφNrs
mn = −1

2
e−imφδr 6=s, (A.36)

where δr 6=s = 1 − δrs. To get this result we used (A.13) and the fact that δ(x − x′) on

eq. (A.35) contributes only if x can be equal to x′ which happens if r = s, namely both

points are on the same side of the slit.
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The next property is related to the values of the Green function for σ0 < φ < 2π − σ0.

A lengthy but not difficult calculation reveals that

Re(∂ρG) = −π

2
δ(φ − φ′), εi = −1, u = eiφ, u′ = eiφ′

, σ0 < φ < 2π − σ0. (A.37)

Again, doing a Fourier transform and using (A.13) we obtain

∑

n

|n|einφNrs
mn = −1

2
e−imφδr 6=s, εi = −1. (A.38)

The equivalent identity for εi = 1 is a little more difficult to derive. We start from the

expression for G and replace z+ =
√

yeiΦ. We do the same for z′ but we need to consider

two cases, when −σ0 < φ′ < σ0 and when σ0 < φ′ < 2π−σ0. Then we can compute G and

obtain that

G11 = ln
sin σ0

2

1 + sin σ0
2

+ ln |eiφ − eiφ′ | − ln |1 − e−iφ′

2
| − ln |1 − e−iφ

2
| + 1

2
(ln z′ + ln z̄′),

for εi = 1, σ0 < φ < 2π − σ0. (A.39)

We only computed G11 since the others follow from the identities (A.33). From the relation

between ρ and z one finds that

(u − 1)2

u
= − 4z2(1 − y)2

(1 + z2)(z2 + y2)
. (A.40)

Taking logarithms on both sides and taking the real part we find that

2 ln z + 2 ln z̄ = G(z, i) + G(z, iy) − 4 ln 2 − 4 ln(1 − y) + 4 ln |1 − u| − 2 ln |u|, (A.41)

where the Green function is taken with εi = 1. Doing a Fourier transform we find that

ln z + ln z̄ =
∑

n

αneinφ, αn 6=0 = N11
n0 + N12

n0 −
1

|n| , εi = +1. (A.42)

Using this we can expand (A.39) to obtain

∑

n

einφN11
nm =

1

2
(N11

n0 + N12
n0), σ0 < φ < 2π − σ0, (A.43)

i.e. the function of φ on the left is actually a constant in that interval.

We can summarize the properties of Nrs
mn as

• εi = −1 (Dirichlet)

∑

n einφNrs
mn = 1

2|m|e
−imφδrs, −σ0 < φ < σ0

∑

n |n|einφNrs
mn = − 1

2|m|e
−imφδr 6=s, σ0 < φ < 2π − σ0,

(A.44)
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• εi = +1 (Neumann)

∑∞
n=−∞ |n|einφNrs

mn = −1
2e−imφδrs, −σ0 < φ < σ0

∑

n einφNrs
mn = 1

2|m|(2 − e−imφ)δr 6=s + (N11
n0 + N12

n0)(δ
rs − 1

2), σ0 <φ<2π−σ0,

(A.45)

Other useful relations are:

N11
nm(εi = −1) = sign(n) sign(m)N11

nm(εi = +1), (m,n 6= 0) (A.46)

N12
nm(εi = −1) = −sign(n) sign(m)N12

nm(εi = +1), (m,n 6= 0) (A.47)

which can be used to derive

∑

n 6=0

sign(n)N11
nm(εi = −1)einσ =

1

2
sign(m)

{

N12
m0(εi = +1) − N11

m0(εi = +1)
}

(A.48)

∑

n 6=0

sign(n)N12
nm(εi = −1)einσ =

1

2m
e−imσ +

1

2
sign(m)

{

N12
m0(εi = +1) − N11

m0(εi = +1)
}

A.2 Limit of large subindex

It is useful to understand also various limits of the Neumann coefficients. One is their

behavior for large values of one subindex. In view of the expression (A.17) we only need

to know the behavior of am and fm for large m. These coefficients can be computed by an

integral in the complex plane which can be evaluated by a saddle point approximation. In

terms of the parameter y defined in eq. (A.2) we have

fm(y) =
i
√

y

2πm

∮

i
dz

1

(z −√
y)2

(

(z + i)(z − iy)

(z − i)(z + iy)

)m

, (A.49)

am(y) = − i

2πm

∮

i
dz

(

(z + i)(z − iy)

(z − i)(z + iy)

)m

. (A.50)

To understand the saddle point calculation it is useful to plot numerically the absolute

value of the integrand as a function of z. This is a useful aid to clarify the position of the

saddle points. In any case, a standard calculation gives

fm 'm→∞

√
σ0√

2πm
e−i π

4 eimσ0 , (A.51)

a1
m 'm→∞ 4i − 2i√

2π

1

m
3
2

cos σ0
2

sin σ0
2

1√
sin σ0

cos
(

mσ0 −
π

4

)

, (A.52)

a2
m 'm→∞

2i√
2π

1

m
3
2

cos σ0
2

sin σ0
2

1√
sin σ0

cos
(

mσ0 −
π

4

)

. (A.53)

Except for the constant part, the coefficients am are subleading and can be ignored. For

m → ∞ the contribution comes from fm.
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A.3 Limit σ0 → 0

Other limit of interest are σ0 → 0. Using standard properties of the Legendre polynomials

one can derive that the functions fm>0(σ0), ar
m(σ0) and f r

0 (σ0) which enter in the formula

for the Neumann coefficients behave as:

fm>0(σ0) ' σ0

2

(

1 +
iσ0

2
m − σ2

0

4

(

m2 +
1

6

)

+ · · ·
)

, (A.54)

f1
0 (σ0) ' 1

2
[(1 + εi) − i(1 − εi)] −

1 + εi

4
σ0 +

i

16
(1 − εi)σ

2
0 + · · · , (A.55)

f2
0 (σ0) ' 1

2
[(1 + εi) − i(1 − εi)] +

1 + εi

4
σ0 +

i

16
(1 − εi)σ

2
0 + · · · , (A.56)

a1,2
m (σ0) ' 2i

(

1 ± σ0

2
m + · · ·

)

. (A.57)

From here we can obtain the behavior of Nrs
mn. Assuming that m,n > 0 we obtain that

Nrr
mn ' −1

8
σ2

0 , Nrr
m,−n ' −εi

8
σ2

0, Nrr
−m,−n ' −1

8
σ2

0 , (σ0 → 0) (A.58)

which together with the properties (A.33) of Nrs
mn determine completely the small σ0 be-

havior when m,n 6= 0. Note that, in particular, (A.33) implies that

N12
m,−m ' − 1

2|m| +
σ2

0

8
+ · · · , (A.59)

has an order zero contribution. In the case that one subindex is zero we get

N11
m0 ' 1

2|m| +
1 + εi

4
σ0 −

σ2
0

16
[(1 + εi) + |m|(1 − εi)] + · · · , (A.60)

N12
m0 ' 1

2|m| +
1 + εi

4
σ0 −

σ2
0

16
[−(1 + εi) + |m|(1 − εi)] + · · · , (A.61)

N21
m0 ' 1

2|m| −
1 + εi

4
σ0 −

σ2
0

16
[−(1 + εi) + |m|(1 − εi)] + · · · , (A.62)

N22
m0 ' 1

2|m| −
1 + εi

4
σ0 −

σ2
0

16
[(1 + εi) + |m|(1 − εi)] + · · · . (A.63)

Where in all cases we have expanded to the order that is necessary for the main part of

the paper.
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